KoNuLaR |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(x + y)n AÇILIMININ ÖZELLİKLERİ |
|
|
(n + 1) terimİ vardır.
2) Her terimdeki x ve y çarpanlarının üslerinin top-lamı n dir.
3) Katsayılar toplamını bulmak için değişkenler yerine 1 yazılır. Buna göre, (x + y)n nin katsayılarının toplamı (1 + 1)n = 2n dir.
4) (x + y)n ifadesinin açılımı x in azalan kuvvetlerine göre dizildiğinde;
baştan (r + 1). terim :
sondan (r + 1). terim :
(x – y)n ifadesinin açılımında 1. terimin işareti (+), 2. terimin işareti (–), 3. terimin işareti (+) ... dır.
Kısaca; y nin üssü çift sayı olan terimin işareti (+), tek sayı olan terimin işareti (–) dir.
|
Ü n Î N+ olmak üzere,
(x + y)2n nin açılımında ortanca terim

Ü n Î IN+ olmak üzere,
(xm + )n açılımındaki sabit terim,
ifadesinde m . (n – r) – kr = 0 koşulunu sağlayan n ve r değerleri yazılarak bulunur.
Ü c bir gerçel sayı olmak üzere, (x + y + c)n açılımındaki sabit terimi bulmak için
x = 0 ve y = 0 yazılır.
Ü (a + b + c)n nin açılımında
ak . br . cm li terimin katsayısı;

|
|
|
|
|
|
|
|
|
|
|
|