KoNuLaR |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bayağı Logaritma
a) Karekteristik ve Mantis
x R+ , k Z ve 0 m<1 olmak üzere, log x = k+m eşitliğinde k tamsayısına x in logaritmasının karekteristiği, m reel sayısına da x in logaritmasının mantisi denir.
Örnek:
log 30 = 1,477 ifadesinde, 30 sayısının logaritmasının karekteristiği1 ve mantisi 0,477 dir.
Örnek:
log2 = 0,301 olduğuna göre, log(800) değerinin karekteristik ve mantisini bulalım.
Çözüm:
log (800) = log (23.102) = 2 + 3 log2
= 2 + 3. (0,301)
= 2 + 0,903
= 2,903 olduğundan,
karekteristik 2 ve mantis 0,903 olur.
Not:
ve
olduğuna dikkat edilmelidir.
Uyarı:
1 den büyük pozitif tamsayıların basamak sayısı, sayının logaritmasının karekteristiğinin bir fazlasıdır.
Örnek:
log 2 = 0,301 olduğuna göre, (40)40 sayısının kaç basamaklı bir sayı olduğunu bulalım.
Çözüm:
Log (40)40 = 40. log(40)
= 40. (log 22.10)
= 40. (1 + 2 log 2)
= 40. (1+ 0,602)
= 64,08 olduğundan, karekteristik 64 ve basamak sayısı 65 tir.
b) Kologaritma:
x R+ olmak üzere, x in çarpmaya göre tersinin logaritmasına x in kologaritması denir ve colog x biçiminde gösterilir.
Colog x = log = log x –1 = - log x tir.
Kaynak: Delinetciler Paylaşım Forumu
|
|
|
|
|
|
|
|
|
|
|
|