MATEMATİK
  İKİNCİ DERECEDEN BİR FONKİSYONDA PARABOLÜN SİMETRİSİNİ BULMA
 

İKİNCİ DERECEDEN BİR FONKSİYONUN TEMSİL ETTİĞİ PARABOLÜN SİMETRİ EKSENİNİ BULMA

y = ax2 parabolünün simetri ekseninin, x = 0 doğrusu olduğunu görmüştük.
y = ax2 + bx + c fonksiyonunun, y = biçiminde yazılabildiğini daha önce göstermiştik. Burada, diyelim ve x1 değerini bu eşitlikle yerine yazalım.
elde edilir.








Yukarıdaki grafiğe dikkat ederseniz, bu grafiğin kollarının, x = doğrusuna göre simetrik olduğunu görürsünüz. İşte bu, x = doğrusuna, y = ax2 + bx + c parabolünün SİMETRİ EKSENİ denir.

ÖRNEKLER

1. y = 2x2 – 4x + 3 parabolünün simetri eksenini bulalım.

Verilen fonksiyonda, a = 2 , b = -4 olup x = dir.
O halde, x = 1 doğrusu simetri eksenidir.

2. y = 4x2 – 3 parabolünün simetri eksenini bulalım.

Verilen fonksiyonda, a = 4 , b = 0 olup x = dır.
O halde, x = 0 doğrusu (y ekseni) simetri eksenidir.

• y = ax2 ve y = ax2 + c parabollerinin simetri eksenleri, x = 0 doğrusu, yani, y eksenidir.
• y = a(x-r)2 ve y = a(x-r)2 + k parabollerinin simetri eksenleri, x = r doğrusudur.

3. y = (3m – 1)x2 – 4mx + 1 parabolünün simetri ekseni, x = 3 doğrusu ise, m kaçtır?

Verilen fonksiyonda, a = 3m – 1 ve b = -4m dir.
Simetri ekseni x = 3 doğrusu ise;
bulunur.

EKSENLERİ KESTİĞİ NOKTALARIN KOORDİNATLARI VERİLEN BİR PARABOLÜN DENKLEMİNİ BULMA

x eksenini (p, 0) ve (q, 0), y ekseninide (0, n) noktasında kesen parabolün denklemini bulalım.






x eksenini kesen noktaların apsisi, aradığımız denklemin kökleridir. O halde, kökleri bilinen 2. dereceden denklemin yazılışını hatırlarsak bu denklem;

a[x2 – (x1 + x2).x + (x1.x2)] = 0 biçiminde idi. Dolayısıyla, aradığımız parabolün denklemi;
y = a[x2 – (p + q) x + p.q] olur. (1)

Ayrıca grafik, (0, n) noktasından geçtiği için, bulduğumuz (1) eşitliğini sağlar. Yani, x = 0 alınırsa y = n olur. Bu değerleri yerine yazarsak, a yı bulur ve parabolün denklemi olan y = ax2 + bx + c yi elde ederiz.

2. YOL: Aradığımız denklem, y = ax2 + bx + c dir. Bu denklem, grafiğin üzerindeki üç noktayı da sağlayacağından, bu noktaların bileşenleri yerine yazılarak, 3 denklem elde edilir. Bu denklemlerin ortak çözümü ile a, b, c bulunur ve yerine yazılırsa, istenilen denklem bulunmuş olur.

GRAFİĞİNİN TEPE NOKTASI İLE HERHANGİ BİR NOKTASININ KOORDİNATLARI VERİLDİĞİNDE PARABOLÜN DENKLEMİNİ BULMA

Tepe noktası T(r, k) olan ve y eksenini (0, n) noktasında kesen parabolün denklemini bulalım.






Grafiğinin tepe noktası T(r, k) olan ikinci dereceden y = ax2 + bx + c fonksiyonunun, y = a(x – r)2 + k biçiminde yazılabildiğini öğrenmiştik. Ayrıca grafik (0, n) noktasından geçtiği için, bu nokta, y = a(x – r)2 + k denklemini sağlar. Yani, x = 0 için, y = n alınarak a değeri bulunabilir.

ÖRNEKLER

1. Aşağıda grafiği verilen parabolün denklemini bulalım.






Parabolün tepe noktası olan, T(2, -2) , y = a(x – r)2 + k bağıntısını sağlar.
y = a(x – r)2 + k (r = 2, k = -2 yazalım.)
y = a(x – r)2 – 2 bulunur. (I)

Ayrıca grafik (0, 3) noktasından geçtiği için, bu nokta (I) bağıntısını sağlar.
y = a(x – 2)2 – 2 (x = 0, y = 3 yazalım)
3 = a(0 –2)2 – 2  3 = 4a – 2  a = O halde aradığımız. Denklem;
tür.

2. Aşağıda, grafiği verilen parabolün denklemini bulalım.






Tepe noktası olan T(-1, 2), y=a(x – r)2 + k bağıntısını sağlar.
y = a(x – r)2 + k (r = -1, k = 2 yazalım)
y = a(x + 1)2 + 2 bulunur. (I)
Ayrıca grafik, (0, 0) noktasından geçtiği için, bu nokta (I) bağıntısını sağlar.
y =a(x + 1)2 + 2 (x = 0, y = 0 yazalım)
0 = a(0 + 1)2 + 2  0 = a + 2  a = -2 bulunur. O halde, aranılan denklem;
y = -2(x + 1)2 + 2 dir.

3. Aşağıda grafiği verilmiş olan parabolün denklemini bulalım.






Tepe noktası olan T(1, 0), y = a(x – 1)2 + k bağıntısını sağlar.
y = a(x – r)2 + k (r = 1, k = 0 yazalım)
y = a(x – r)2 + 0 bulunur. (I)
Ayrıca grafik, (0, 2) noktasından geçtiği için, bu nokta (I) bağıntısını sağlar.
y = a(x – r)2 (x = 0, y = 2 yazalım)
2 = a(0 – 1)2  a = 2 bulunur. O halde, aradığımız denklem; y = 2(x – 1)2 dir.

y = ax2 + bx +c fonksiyonunun grafiği x eksenine teğet ise ax2 + bx + c = 0 denkleminin diskirminantı sıfırdır.

ÖRNEKLER

1. y = x2 – (m – 2)x + 4 parabolü x eksenine teğet ise, m değerlerini bulalım.

Verilen parabol x eksenine teğet olduğundan,
x2 – (m – 2)x + 4 = 0 denkleminde =0 dır.
= b2 – 4ac = [-(m – 2)]2 – 4 . 1 . 4 = m2 – 4m + 4 – 16 = m2 – 4m – 12
= 0  m2 – 4m – 12 = 0  m1 = 6 v m2= -2 dir.

2. y = mx2 + (2m – 1)x + m + 2 parabolünün x eksenine teğet olması için, m kaç olmalıdır?

mx2 + (2m – 1)x + m + 2 = 0 denkleminde = 0 olmalıdır.
= (2m –1)2 – 4m(m + 2) = 4m2 – 4m – 4m + 1 –4m2 – 8m
= -12m + 1
= 0  -12m + 1 = 0  m = bulunur

 
   
 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol