MATEMATİK
  ÇARPAN TEOREMİ
 

Çarpan teoremi
Eğer (n'inci) mertebeden f(x) = 0 denkleminin x = a gibi bir kökü (çözümü) varsa, g(x) çokterimlisi (n-1) mertebeden olmak üzere:
f(x) = (x-a)·g(x)
yazılabilir.
Kök sayısı
Bir denklemin en fazla, derecesi kadar kökü vardır.
Katlı kök
Eğer:
f(x)=(x-a)k·g(x)
yazılabiliyorsa x=a, f(x)=0 denkleminin k katlı köküdür.

Mesela:
x³ + x² - 5x + 3 = (x-1)²·(x+3) = 0
denkleminde x = 1 iki katlı kök, x = -3 tek katlı köktür.
Karmaşık kök
Eğer gerçel katsayılara sahip f(x) = 0 denkleminin bir kökü x= a + ib ise, x = a - ib de diğer bir köktür.
Gerçel kökün yeri
Eğer gerçel katsayılara sahip f(x) için f(a) ve f(b) ters işaretli değerler ise, a ve b arasında f(x) = 0 denkleminin bir kökü vardır. Mesela
f(x) = x5 - x - 1 = 0
da f(1) = -1 ve f(2) = 29 olduğu için, denklemin 1 ile 2 arasında bir kökü vardır.
İkinci derece denklem
x² + ax + b = 0 denkleminin en çok iki kökü bulunur. Bu kökler
gerçel çözümün olması için karekök altındaki ifadenin Negatif olmaması gerekir. Eğer kökün altındaki ifade sıfırsa, kök tek olarak iki katlı ortaya çıkar. Negatif ise gerçek kök yoktur

 
   
 
=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=